Kunci Jawaban
Kunci Jawaban Matematika Kelas 8 Semester 2 Halaman 254, Ayo Berlatih 9.3: Median dan Modus
Inilah kunci jawaban matematika kelas 8 semester 2 bagian Ayo Berlatih 9.3 halaman 254, Ayo Berlatih 9.3: Median dan Modus.
TRIBUN-BALI.COM – Inilah kunci jawaban matematika kelas 8 semester 2 bagian Ayo Berlatih 9.3 halaman 254, Ayo Berlatih 9.3: Median dan Modus.
Kunci jawaban matematika kelas 8 semester 2 soal bagian Ayo Berlatih 9.3 halaman 254 yang dibagikan kali ini, dibuat sesuai pada buku matematika kelas 8 semester 2 Kurikulum 2013 edisi revisi 2018.
Kunci jawaban matematika kelas 8 semester 2 halaman 254 ini, akan mengulas soal lanjutan dari artikel sebelumnya.
Kunci jawaban kali ini akan membahas soal matematika kelas 8 semester 2 Ayo Berlatih 9.3 nomer 3 hingga 7 materi mencari Median dan Modus.
Selain itu, kunci jawaban matematika kelas 8 semester 2 Ayo Berlatih 9.3 halaman 254 ini, sudah dilengkapi dengan pembahasan di setiap akhir soal.
Baca juga: Kunci Jawaban Matematika Kelas 8 Semester 2 Halaman 253, Ayo Berlatih 9.3: Median dan Modus
Baca juga: Indonesia Gagal Main di Piala Dunia U20, Pemain Liga 1 Digandeng Eks Persib Bandung Bela Palestina
Hal tersebut dilakukan agar para siswa tidak hanya mengetahui jawabannya saja, tapi juga memahami proses ditemukannya jawaban tersebut.
Alangkah baiknya, jika adik-adik kelas 8 SMP mencoba untuk mengerjakan secara mandiri terlebih dahulu, sebelum melihat ke kunci jawaban yang sudah disediakan.
Dilansir dari Tribunnews, berikut adalah kunci jawaban matematika kelas 8 semester 2 bagian Ayo Berlatih 9.3 halaman 254, Ayo Berlatih 9.3: Median dan Modus.
Kunci Jawaban Halaman 254
Uji Kompetensi 9.3
Soal 3-7
3. Tabel berikut menunjukkan data pendapatan hasil panen sayur A dan B di Desa Sukamakmur.
a. Berapa total pendapatan panen sayur A dan B masing-masing selama 4 bulan?
b. Berapa total pendapatan hasil panen seluruhnya dari kedua sayur selama 4 bulan tersebut?
c. Pada bulan apa terdapat selisih pendapatan terbesar dari panen sayur A dan B?
d. Berapa rata-rata pendapatan dari panen sayur A dan B masing-masing selama 4 bulan?
e. Mengacu pada pendapatan rata-rata dari panen sayur A dan B selama 4 bulan tersebut, menurutmu sayur apa yang sebaiknya disediakan lebih banyak pada bulan November? Jelaskan.
f. Berapa median dari pendapatan panen sayur A dan B masing-masing selama 4 bulan?
g. Berapa banyak pendapatan dari panen sayur B yang harus diusahakan pada bulan November agar rata-rata pendapatan hasil panen sayur B selama bulan Juli sampai November menjadi Rp800.000,00?
Jawaban:
a. Total pendapatan panen sayur A dan B masing-masing selama 4 bulan
- Pendapatan panen sayur A = 750 + 650 + 700 + 400 = 2.500
Jadi, total pendapatan panen sayur A adalah sebesar Rp2.500.000,00.
- Pendapatan panen sayur B = 500 + 550 + 750 + 800 = 2.600
Jadi, total pendapatan panen sayur B adalah sebesar Rp2.600.000,00.
b. Total pendapatan kedua sayur
Total pendapatan kedua sayur = total pendapatan panen sayur A + total pendapatan panen sayur B
= Rp2.500.000 + Rp2.600.000
= Rp5.100.000
Jadi, total pendapatan kedua sayur adalah Rp5.100.000,00.
Baca juga: Kunci Jawaban Matematika Kelas 8 Semester 2 Halaman 283 284, Ayo Kita Berlatih 10.1: Part 3
c. Pada bulan Oktober selisih pendapatan kedua jenis sayur paling besar.
Pendapatan panen sayur A pada bulan Oktober Rp400.000.
Pendapatan panen sayur B pada bulan Oktober Rp800.000.
Rp800.000 - Rp400.000 = Rp 400.0000
d. Rata-rata pendapatan dari panen sayur A dan B masing-masing selama 4 bulan:
- Total pendapatan panen sayur A selama 4 bulan adalah sebesar Rp2.500.000,00.
Rata-rata pendapatan sayur A selama empat bulan = Rp2.500.000 : 4 = Rp625.000
Jadi, rata-rata pendapatan sayur A selama empat bulan adalah Rp625.000,00.
- Total pendapatan panen sayur B selama 4 bulan adalah sebesar Rp2.600.000,00.
Rata-rata pendapatan sayur B selama empat bulan = Rp2.600.000 : 4 = Rp650.000
Jadi, rata-rata pendapatan sayur B selama empat bulan adalah Rp650.000,00.
e. Sayur yang sebaiknya disediakan lebih banyak pada bulan November adalah sayur B.
Sayur B harus disediakan (dipanen) lebih banyak pada bulan November karena permintaan sayur B semakin meningkat.
Sedangkan permintaan yang ditunjukkan oleh diagram pendapatan sayur A tidak stabil.
f. Median dari pendapatan panen sayur A dan B masing-masing selama 4 bulan:
- Median panen sayur A = 400 650 700 750
Me = 650 + 700 / 2
Me = 1350 / 2
Me = 675
Jadi, median dari pendapatan panen sayur A adalah Rp675.000,00.
- Median panen sayur B = 500 550 750 800
Me = 550 + 750 / 2
Me = 1300 / 2
Me = 650
Jadi, median dari pendapatan panen sayur B adalah Rp650.000,00.
g. Banyak pendapatan dari panen sayur B yang harus diusahakan pada bulan November agar rata-rata pendapatan hasil panen sayur B selama bulan Juli sampai November menjadi Rp800.000,00:
800.000 = 2.600.000 + x / 5
4.000.000 = 2.600.000 + x
x = 1.400.000
Jadi, banyak pendapatan dari panen sayur B yang harus diusahakan pada bulan November agar rata-rata pendapatan hasil panen sayur B selama bulan Juli sampai November menjadi Rp800.000,00 adalah Rp1.400.000,00.
Baca juga: Kunci Jawaban Matematika Kelas 8 Semester 2 Halaman 281 282, Ayo Kita Berlatih 10.1: Part 2
4. Data berikut menunjukkan tinggi badan 20 siswa kelas 8 SMP Ceria.
154 153 159 165 152 149 154 151 157 158
154 156 157 162 168 150 153 156 160 154
a. Urutkan data di atas dari nilai terkecil sampai terbesar.
b. Hitunglah mean, median, dan modus dari data di atas.
Jawaban:
a. 149 150 151 152 153 153 154 154 154 154 156 156 157 157 158 159 160 162 165 168
b. Mean, median, dan modus:
- Mean (rata-rata)
= jumlah data / banyak data
= 3.122/20
= 156,1
- Median (nilai tengah)
= data ke (n + 1)/2
= data ke (20 + 1)/2
= data ke 21/2
= data ke 10,5
artinya mediannya terletak antara data ke 10 dan data ke 11
Dari data yang telah diurutkan diperoleh:
data ke 10 = 154
data ke 11 = 156
Me = (154 + 156)/2
Me = 310/2
Me = 155
- Modus
Modus ialah nilai yang sering muncul atau nilai paling banyak.
Berdasarkan data tersebut, nilai yang sering muncul adalah 154 yakni sebanyak empat kali.
Jadi, berdasarkan data tersebut, mean = 156,1; median = 155; dan modus = 154.
5. Pada kelas VIII C SMP Ceria, rata-rata nilai matematika siswa perempuan adalah 72 dan rata-rata nilai siswa laki-laki adalah 77. Jika rata-rata nilai matematika seluruh siswa di kelas tersebut adalah 74, tentukan perbandingan banyaknya siswa perempuan terhadap siswa laki-laki di kelas tersebut.
Jawaban:
misal:
laki-laki = a
perempuan = b
rata-rata kelas = jumlah seluruh nilai / banyak siswa
74 = ((72 x a) + (72 x b)) / a + b
74 = (72a + 77b) / a + b
74 x (a + b) = 72a + 77b
74a + 74b = 72a + 77b
74a - 72a = 77b - 74b
2a = 3b
Jadi, perbandingan banyak siswa perempuan dan laki-laki di kelas tersebut adalah 2 : 3.
Baca juga: Kunci Jawaban Matematika Kelas 8 Semester 2 Halaman 279 280, Ayo Kita Berlatih 10.1: Part 1
6. Nilai rata-rata ujian matematika di suatu kelas adalah 72. Nilai rata-rata siswa putra adalah 75 dan nilai rata-rata siswa putri adalah 70. Jika banyaknya siswa putri 6 lebih banyak dari siswa putra, berapa banyaknya siswa di kelas tersebut?
Jawaban:
misal:
laki-laki = a
perempuan = b
b = 6 + a
rata-rata kelas = jumlah seluruh nilai / banyak siswa
72 = ((75 x a) + (70 x b)) / (a + b)
72 = (75a + (70 x (6 + a)) / (a + (6 + a))
72 = (75a + 420 + 70a) / 2a + 6
144a + 432 = 145a + 420
a = 12
b = 6 + a
= 6 + 12
= 18
total seluruh siswa = a + b
= 12 + 18
= 30
Jadi, banyak siswa di kelas tersebut adalah 30 anak.
7. Tabel berikut ini menunjukkan data nilai ujian IPA siswa kelas VIII C.
a. Ketua kelas VIII C mengatakan bahwa nilai rata-rata ujian IPA kelas VIII C adalah 7, karena banyak siswa yang mendapatkan nilai tersebut. Apakah pernyataan ketua kelas tersebut benar? Jelaskan jawabanmu.
b. Berapakah median dan modus data tersebut?
c. Seorang siswa dinyatakan lulus dalam ujian tersebut jika mendapatkan nilai lebih dari atau sama dengan 6. Berapa persen siswa yang tidak lulus di kelas VIII C?
Jawaban:
a. Pernyataan ketua kelas bahwa rata-rata nilai ujian IPA kelas VIII C sama dengan 7 adalah salah.
Berikut perhitungannya:
Jumlah data = (5 × 3) + (6 × 4) + (7 × 10) + (8 × 7) + (9 × 4) + (10 × 2)
= 15 + 24 + 70 + 56 + 36 + 20
= 221
Banyak data = 3 + 4 + 10 + 7 + 4 + 2
= 30
Rata-rata = jumlah data / banyak data
= 221 / 30
= 7,36
Jadi, rata-rata nilai ujian IPA siswa kelas VIII C yang tepat adalah 7,36 atau dibulatkan menjadi 7,4.
Baca juga: Kunci Jawaban Matematika Kelas 8 Semester 2 Halaman 270, Uji Kompetensi Bab 9: Soal Esai Part 2
- Median
1/2 jumlah frekuensi = 1/2 × 30 = 15
Data ke-15 dan ke-16 adalah 7
Jadi, median data tersebut adalah 7.
- Modus
Frekuensi tertinggi 10
Jadi, modus data tersebut adalah 7.
c. Persentase siswa yang tidak lulus di kelas VIII C
Siswa dinyatakan lulus ujian jika mendapat nilai ≥ 6.
Banyak siswa yang lulus = 4 + 10 + 7 + 4 + 2 = 27 orang
Banyak siswa yang tidak lulus = 3 orang
Persentase siswa yang tidak lulus = banyak yang tidak lulus / jumlah siswa x 100 persen
= 3 / 30 x 100 persen
= 10 persen
Jadi, persentase siswa yang tidak lulus di kelas VIII C adalah 10 persen.
*) Disclaimer:
- Artikel ini hanya ditujukan kepada orang tua untuk memandu proses belajar anak.
- Sebelum melihat kunci jawaban, siswa harus terlebih dahulu menjawabnya sendiri, setelah itu gunakan artikel ini untuk mengoreksi hasil pekerjaan siswa.
Artikel ini telah tayang di Tribunnews.com dengan judul Kunci Jawaban Matematika Kelas 8 Halaman 254 Semester 2, Ayo Kita Berlatih 9.3: Median dan Modus. (*)
kunci jawaban
matematika
semester 2
Kurikulum 2013
Kunci Jawaban Matematika Kelas 8 Halaman 254
Median
modus
Jawaban Lembar Aktivitas 14, Kunci Jawaban IPS Kelas 8 Halaman 187 Kurikulum Merdeka |
![]() |
---|
Jawaban Lembar Aktivitas 12, Kunci Jawaban IPS Kelas 8 Halaman 179 Kurikulum Merdeka |
![]() |
---|
Jawaban Lembar Aktivitas 11, Kunci Jawaban IPS Kelas 8 Halaman 176 177 Kurikulum Merdeka |
![]() |
---|
Jawaban Lembar Aktivitas 10, Kunci Jawaban IPS Kelas 8 Halaman 175 Kurikulum Merdeka |
![]() |
---|
Jawaban Aktivitas 5, Kunci Jawaban PAI Kelas 9 Halaman 131 Kurikulum Merdeka |
![]() |
---|
Isi komentar sepenuhnya adalah tanggung jawab pengguna dan diatur dalam UU ITE.